Calculus
Cartesian Coordinates

To specify a point in three-dimensional space, the most direct form is to define three planes
perpendicular to each other and specify the distances to them as coordinates (x, y, z) .

For volume integrals, we use a differential given by:

dV =dxdydz
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In Cartesian coordinates the unit vectors along the three axes are:

x=(1,0,0)
y=(0,1,0)
2=(0,0,1)

Setting up integrals in Cartesian coordinates

The simplest case is a rectangular prism in which the volume to integrate is a box with sides
perpendicular to the axes X, Y and Z, whose limits are:

xX€[xy,x]
Y€ [yenl

7€ [z, 7]
x KX

X

X

The differential of volume is dV = dxdydz and we can use the limits directly in the triple integral
corresponding to the limits of the box.
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Another example is the integral over a volume whose sides are oblique, for example the volume
in the figure below:
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We see that in this case the limits of x are fixed throughout the whole volume, but y and z depend
on each other. We can determine the limits of y for a given value of z as follows:
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What we need to do is take z as a constant when integrating over y, but set the limits in the
integral functions of z as follows:
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Example: Calculate the total charge in the volume shown in the figure.

The density of charge is given by the equation:

p=03Bx"+y)



Solution: We observe that if z is considered constant, the limits for y will be:
v, =0,y =10-2z

Then the integral becomes:
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We integrate over x
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Then, we integrate over y, but keeping the limits stablished above:

dz =[(1000(10—22) +5(10-22)" ) dz
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Finally, we integrate over z:
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