
Calculus 

Cartesian Coordinates
 

To specify a point in three-dimensional space, the most direct form is to define three planes 

perpendicular to each other and specify the distances to them as coordinates ),,( zyx . 

 

For volume integrals, we use a differential given by: 
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In Cartesian coordinates the unit vectors along the three axes are: 
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Setting up integrals in Cartesian coordinates 
 

The simplest case is a rectangular prism in which the volume to integrate is a box with sides 

perpendicular to the axes X, Y and Z, whose limits are: 
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The differential of volume is dxdydzdV =  and we can use the limits directly in the triple integral 

corresponding to the limits of the box. 
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Another example is the integral over a volume whose sides are oblique, for example the volume 

in the figure below: 

 
 

We see that in this case the limits of x are fixed throughout the whole volume, but y and z depend 

on each other. We can determine the limits of y for a given value of z as follows: 
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What we need to do is take z as a constant when integrating over y, but set the limits in the 

integral functions of z as follows: 
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Example: Calculate the total charge in the volume shown in the figure.  

 

 
 

The density of charge is given by the equation:  

 

)3( 2 yx +=ρ  

 

 



Solution: We observe that if z is considered constant, the limits for y will be: 
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Then the integral becomes: 
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We integrate over x  
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Then, we integrate over y, but keeping the limits stablished above: 
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Finally, we integrate over z: 
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